This course presents advanced models available in IBM SPSS Modeler. The participant is first introduced to a technique named PCA/Factor, to reduce the number of fields to a number of core factors, referred to as components or factors. The next topics focus on supervised models, including Support Vector Machines, Random Trees, and XGBoost. Methods are reviewed on how to analyze text data, combine individual models into a single model, and how to enhance the power of IBM SPSS Modeler by adding external models, developed in Python or R, to the Modeling palette.
Please refer to course overview.
Introduction to advanced machine learning models • Taxonomy of models • Overview of supervised models • Overview of models to create natural groupings Group fields: Factor Analysis and Principal Component Analysis • Factor Analysis basics • Principal Components basics • Assumptions of Factor Analysis • Key issues in Factor Analysis • Improve the interpretability • Factor and component scores Predict targets with Nearest Neighbor Analysis • Nearest Neighbor Analysis basics • Key issues in Nearest Neighbor Analysis • Assess model fit Explore advanced supervised models • Support Vector Machines basics • Random Trees basics • XGBoost basics Introduction to Generalized Linear Models • Generalized Linear Models • Available distributions • Available link functions Combine supervised models • Combine models with the Ensemble node • Identify ensemble methods for categorical targets • Identify ensemble methods for flag targets • Identify ensemble methods for continuous targets • Meta-level modeling Use external machine learning models • IBM SPSS Modeler Extension nodes • Use external machine learning programs in IBM SPSS Modeler Analyze text data • Text Mining and Data Science • Text Mining applications • Modeling with text data
Share course with your friends
Cookies and similar technologies are used on our sites to personalize content and ads. You can find further details and change your personal settings below. By clicking OK, or by clicking any content on our sites, you agree to the use of these cookies and similar technologies.
When you visit any of our websites, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and manage your preferences. Please note, that blocking some types of cookies may impact your experience of the site and the services we are able to offer.